Capricor **Dilated CardiomYopathy INtervention with Allogeneic MyocardIally-regenerative Cells (DYNAMIC):** 12 Month Safety & Exploratory Efficacy Results

Author(s): Tarun Chakravarty, MD¹; Raj Makkar, MD¹; Nichelle Kittleson, MD, PhD¹; Jeff Rudy³; Janice M. Pogoda, PhD³; Rachel R. Smith, PhD³; Konstantinos Malliaras, MD⁴; Timothy D. Henry, MD¹; Linda Marbán, PhD³; Deborah D. Ascheim, MD³; Eduardo Marbán, MD, PhD¹ Institution(s): ¹ Cedars-Sinai Heart Institute, Los Angeles, California; ² Johns Hopkins University, Baltimore MD; ³ Capricor Therapeutics, Los Angeles, California; ⁴ University of Athens, Athens, Greece

Introduction

- Intracoronary administration of autologous cardiosph derived cells (CDCs) post-MI is safe and results in dec scar size, increased viable myocardium and improved regional function of infarcted myocardium 1 year pos treatment (CADUCEUS trial).
- Phase 1 results of the ALLSTAR Trial confirmed the sate intracoronary administration of allogeneic CDCs (CAF by stop-flow technique post-MI and demonstrated a decrease in scar size and an increase in viable myocardi
- Here we report the results of the DYNAMIC trial, a single center, prospective, dose-escalation study of non-occlu sequential triple-vessel intracoronary (IC) infusion of CA 1002 in patients with dilated cardiomyopathy (DCM) (EF 35%) and NYHA III-ambulatory IV heart failure (HF).

Methods

DYNAMIC trial enrolled 14 adult subjects with dilated cardiomyopathy, $EF \le 35\%$ and NYHA III heart failure despit maximal medical- and device-based therapy. Four escalati CAP-1002 doses (37.5M to 75M cells) were infused via sequential non-occlusive IC catheter technique, divided among the LAD, RCA and LCx territories.

Primary objective: To determine the safety of CAP-1002 administered by multi-vessel, non-occlusive IC infusion in subjects with HF with reduced ejection fraction (HFrEF). **Secondary objective**: To further assess the safety and explore the efficacy of CAP-1002 administration by multi-vessel, nonocclusive intracoronary infusion in subjects with HFrEF. **Primary safety end-point**: Composite of post infusion reduction of TIMI flow for > 3 min, VT/VF, sudden death, or major adverse cardiac (MACE) events w/in 72 hours post infusion, or acute myocarditis w/in 1 month.

Statistical analysis: The null hypothesis for the primary safety endpoint was that the proportion of subjects experiencing the primary safety endpoint (p_s) = 0.20, tested against the onesided alternative p_s < 0.20 using an exact binomial test. Null hypotheses of change from baseline in efficacy parameters = 0 were tested against two-sided alternatives using signed rank or binomial tests. Due to small sample sizes, dose groups were pooled for statistical analyses. All tests were done using a 0.05 significance level.

Results

here-
creased
d
st-

af	ety of	•
Ρ-	-1002)

Table 1: Demographics and Baseline Characteristics by Dose Group and Combined

	Demographic or Baseline Variable	37.5M (n=3)	50M (n=3)	62.5M (n=3)	75M (n=5)	Tota (n=1
	Age					
ty of	Mean (SD)	71 (3.46)	63 (14.84)	55 (19.63)	56 (8.35)	61 (12
.002)	Median [Min, Max]	73 [67, 73]	67 [47 <i>,</i> 76]	66 [32, 66]	57 [47, 66]	66 [32
•	Gender [n (%)]					
ium.	Male	3 (100%)	3 (100%)	2 (66.7%)	4 (80.0%)	12 (85
le-	Female	0 (0%)	0 (0%)	1 (33.3%)	1 (20.0%)	2 (14.
ısive ∆₽-	Ethnicity [n (%)] Not Hispanic or Latino	3 (100%)	3 (100%)	3 (100%)	5 (100%)	14 (10
F≤						
	TTE LVEF (%)					
	Mean (SD)	23.3 (4.73)	21.7 (2.89)	24.3 (6.03)	22.6 (5.32)	22.9 (4
	Median [Min, Max]	25.0 [18, 27]	20.0 [20, 25]	25.0 [18, 30]	23.0 [17, 30]	24.0 [17
	NYHA Class [n (%)]					
te	Class III	3 (100%)	3 (100%)	3 (100%)	5 (100%)	14 (10
ng	Etiology [n (%)]					_ /
	Ischemic	1 (33.3%)	2 (66.7%)	1 (33.3%)	3 (60.0%)	7 (50.
	Non-Ischemic	2 (66.7%)	1 (33.3%)	2 (66.7%)	2 (40.0%)	7 (50.

Table 2: Secondary Safety Endpoints

Event	Number of events	Number of subjects	Study Day Post-infusion
Appropriate ICD firing	2	1	Day 54 and Day 101
Major adverse cardiac event: cardiac failure	3	2	Day 335 (Subject # 1); Day 258 and Day 279 (Subject # 2
/lajor adverse cardiac vent: dyspnea	1	1	Day 63
Sensitization to donor- Specific HLA ^{\$}	2	2	Day 57 (Subject # 1); Day 91 (Subject # 2)
Hospitalization for stroke	1	1	Day 228

⁵ Defined as mean fluorescence intensity (MFI) ≥ 5000

Conclusions

- status and ventricular function.

Multi-vessel intracoronary infusion of allogeneic cardiosphere-derived cells (CAP-1002) up to 75M cells is safe and feasible. Despite the small sample size, the trial also demonstrated an efficacy signal with concordant improvements from baseline, especially evident at 6 months, in functional

The impact of CDCs on clinical outcomes observed complements prior CDC trials that demonstrated improvement in myocardial scar burden & supports proceeding to a randomized, double blind, placebo controlled trial of CDCs in patients with HFrEF to confirm these promising, preliminary, results.

er	Baseline	Change at 6 months	p- value	Change At 12 months	p- value
/mL)	n=14	n=12		n=12	
	151.5 (32.0, 689.0)	29.5 (-128.0, 364.0)	0.33	19.5 (-81.0, 2906.0)	0.30
ulmonary testing	n=14	n=11		n=11	
max ‹g/min)	13.9 (4.4, 22.4)	0.40 (-5.4, 6.2)	0.43	-0.30 (-6.5 <i>,</i> 7.0)	0.85
CO ₂ Slope	30.6 (0.50, 41.0)	4.1 (-9.3, 23.7)	0.21	-2.3 (-9.0, 24.0)	1.00
ratory quotient	1.1 (0.9, 1.2)	0.03 (-0.11, 0.22)	0.23	0.00 (-0.22, 0.13)	0.30
ute walk test (m)	n=13	n=11		n=10	
	363.0 (180.0, 525.0)	0.0 (-50.0, 240.0)	0.38	-6.5 (-72.0, 215.0)	0.68

ter	Baseline	Change at 6 months	p- value	Change At 12 months	p- value		
	n=14	n=12		n=13			
	48.0 (7.0, 105.0)	-16.0 (-71.0, 19.0)	0.01	-19.0 (-76.0, 33.0)	0.11		
	n=14	n=12		n=13			
cal functioning	48.0 (7.0 <i>,</i> 105.0)	-16.0 (-71.0, 19.0)	0.01	-19.0 (-76.0, 33.0)	0.11		
ional well being	74.0 (32.0 <i>,</i> 92.0)	4.0 (-24.0, 20.0)	0.84	0.0 (-32.0, 24.0)	0.90		
	77.5 (10.0, 100.0)	11.3 (-10.0, 45.0)	0.03	12.5 (-12.5, 45.0)	0.04		
eral Health	52.5 (10.0 <i>,</i> 90.0)	12.5 (-50.0 <i>,</i> 45.0)	0.07	10.0 (-30.0, 30.0)	0.30		